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Improving Signal-to-Noise Ratio Estimation for
Autonomous Receivers

M. Simon1 and S. Dolinar1

A method by which a popular signal-to-noise ratio (SNR) estimator can be re-
configured to yield improved performance is proposed. The reconfiguration consists
of partitioning the symbol interval into a larger (but even) number of subdivisions
than the two that have been traditionally suggested for this estimator but still pro-
cessing the observables in successive pairs. The optimum number of subdivisions is
shown to depend on the SNR range in which the true SNR lies; however, we also
show that these SNR regions can be significantly widened with very little loss in
performance. Most important is the fact that, with this reconfiguration, the SNR
estimator tracks the Cramer–Rao bound on the variance of the estimator over the
entire range of SNR values.

I. Introduction

Estimation of signal-to-noise ratio (SNR) and providing this estimate to the data detector are essential
to the successful functioning of any communications receiver. Depending on the amount of knowledge
available on the information-bearing portion of the received signal, a number of such SNR estimators
have been discussed in the literature [1–11]. In particular, depending on the application at hand, SNR
estimators typically are classified as either “in-service” estimators, i.e., those that derive their estimate
in the presence of the unknown data modulation and thus do not impinge on the channel throughput, or
those that depend on knowledge of the data sequence and as such require periodical insertion of a training
sequence in the data stream in order to function. Although the latter schemes might be expected to yield
better performance, they suffer from the fact that periodic insertion of a training sequence reduces the
throughput of the system. Aside from knowledge of the data symbols themselves, other factors that
potentially affect the choice of SNR estimator are the nature of the modulation itself (i.e., its type and
order) and the degree to which knowledge is available of the carrier phase and frequency and to what
extent they are compensated for in obtaining the SNR estimate. In the case of autonomous receiver
operation, it is desirable to have an SNR estimator that operates successfully in the absence of as much
of this additional knowledge as possible.

The split-symbol moments estimator (SSME) [7–12] is a popular in-service SNR estimator whose
performance for multiple phase-shift-keying (m-PSK) modulation is invariant to knowledge of the carrier
phase, the order m of the modulation, and the data symbols themselves. A block diagram of this estimator
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is illustrated in Fig. 1. Although ad hoc in nature, this estimator is simple to implement and has a
robust performance often approaching that of schemes derived from maximum-likelihood considerations.
Originally conceived for binary PSK (BPSK), the SSME makes use of integrations of the received signal
plus noise in the first- and second-half subintervals of each data symbol (of total symbol duration T ) to
form its estimate of signal-to-noise ratio.

The original SSME R̃ for BPSK needed observations of only the in-phase signal component, but a
later generalization [10] defined an SSME R̂ based on complex-valued samples including both in-phase
and quadrature components. The SSME using complex-valued samples was originally developed for an
application with BPSK signals but nonzero frequency offset, such that relevant information was present
in both in-phase and quadrature components. However, it is easily shown [11] that the SSME R̂ using
complex-valued samples performs equally well (in terms of the mean and variance of the estimator) for
m-PSK independent of the value of m. Specifically, for ideal performance on an additive white Gaussian
noise (AWGN) channel, with no frequency uncertainty and perfect symbol timing, the mean and variance
are exactly given by [11]

E
{

R̂
}

= R +
R + 1
N − 1

var
{

R̂
}

=
1

N − 2

(
N

N − 1

)2 [
(2 + 4R)

(
N − 1/2

N

)
+ R2

] (1)

where R is the true symbol SNR and N is the number of data symbols used in forming the estimate.
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Fig. 1.  Split-symbol SNR estimator for m-PSK modulation.
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II. A Generalization of the SSME Offering Improved Performance

Now suppose that instead of subdividing each data symbol interval T into two halves, we subdivide it
into 2L subintervals of equal length T/2L and use the integrations of the complex-valued received signal
plus noise in successive pairs of these intervals to form the SNR estimator. In effect, we are estimating
the symbol SNR of a data sequence at L times the actual data rate. This data sequence is obtained by
repeating each original data symbol to form L consecutive shorter symbols. For a given total observation
time (equivalently, a given total number of original symbols N), there are LN short symbols corresponding
to the higher data rate, and their symbol SNR is r = R/L. Since the SSME is completely independent of
the data sequence, the new estimator, denoted by r̂L, is just an SSME of the SNR r = R/L of the short
symbols, based on observing LN short symbols, each split into half. Thus, the mean and variance of r̂L

are computed by simply replacing N with LN and R with R/L in Eq. (1). Since, however, we desire an
estimate of R, not r = R/L, we define R̂L = Lr̂L and write the corresponding expressions for the mean
and variance of R̂L:

E
{

R̂L

}
= L

[
R

L
+

R/L + 1
LN − 1

]
= R +

R + L

LN − 1

var
{

R̂L

}
=

L2

LN − 2

(
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LN − 1

)2
[(

2 +
4R

L

) (
LN − 1/2

LN

)
+

(
R

L

)2
] (2)

With this notation, the original SSME is simply R̂ = R̂1, and the performance expressions in Eq. (2)
are valid for any positive integer L ∈ {1, 2, 3, · · ·}. For large N , i.e., N >> 1, the mean and variance in
Eq. (2) simplify within O(1/N2) to

E
{

R̂L

}
= R +

R + L

LN

var
{

R̂L

}
=

L

N

(
2 +

4R

L
+

R2

L2

) (3)

For the remainder of this section, we base our analytic derivations on the asymptotic expressions in
Eq. (3).

For small enough R, we can ignore the R and R2 terms in the variance expression, and the smallest
estimator variance is achieved for L = 1. In this case, R̂ = R̂1 outperforms (has smaller variance than) R̂L

for L > 1, approaching a 10 log10 L dB advantage as R → 0. However, at large enough R for any fixed L,
the reverse situation takes place. In particular, retaining only the R2 term in Eq. (3) for sufficiently large
R/L, we see that R̂L offers a 10 log10 L dB advantage over R̂ in this limit. This implies that, for small
values of R, a half-symbol SSME (i.e., L = 1) is the preferred implementation, whereas beyond a certain
critical value of R (to be determined shortly), there is an advantage to using values of L > 1. In general,
for any given R, there is an optimum integer L = L∗(R) that minimizes the variance in Eq. (3). We
denote the corresponding optimum estimator by R̂∗. We show below that, unlike the case of the estimator
R̂L defined for a fixed L, the optimized estimator R̂∗ requires proportionally more subdivisions of the
true symbol interval as R gets large. As a result, the R2/L2 term in Eq. (3) does not totally dominate
the variance for R >> L, and the amount of improvement at high SNR differs from the 10 log10 L dB
improvement calculated for an arbitrary fixed choice of L and R >> L.

For the moment we ignore the fact that L must be an integer, and minimize the variance expression in
Eq. (3) over continuously varying real-valued L. We define an optimum real-valued L = L•(R), obtained
by differentiating the variance expression of Eq. (3) with respect to L and equating the result to zero, as
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L•(R) =
R√
2

(4)

and a corresponding fictitious SNR estimator R̂• that “achieves” the minimum variance calculated by
substituting Eq. (4) into the asymptotic variance expression of Eq. (3),

var
{

R̂•
}

=
R

N

(
4 + 2

√
2
)

(5)

The minimum variance shown in Eq. (5) can be achieved only by a realizable estimator for values of R
that yield an integer L•(R) as defined by Eq. (5). Nevertheless, it serves as a convenient benchmark
for comparisons with results corresponding to the optimized realistic implementation R̂∗. For example,
from Eqs. (3) and (5) we see that the ratio of the asymptotic variance achieved by any given realizable
estimator R̂L to that achieved by the fictitious estimator R̂• is a simple function of the short symbol
SNR r, not of R and L separately. In particular,

var
{

R̂L

}
var

{
R̂•

} =
2/r + 4 + r

4 + 2
√

2
(6)

The numerator of Eq. (6) is a convex ∪ function of r, possessing a unique minimum at r =
√

2, at which
point the ratio in Eq. (6) evaluates to unity. This result is not surprising, since from Eq. (4) r =

√
2 is

the optimality condition defining the fictitious estimator R̂•. For r >
√

2 or r <
√

2, the ratio in Eq. (6)
for any fixed value of L grows without bound.

We return now to the realistic situation where L must be an integer, but can vary with R or r. Since
the variance expression in Eq. (3) is convex ∪ in L, we can determine whether R̂L is optimum for a given
R by simply comparing its performance to that of its nearest neighbors, R̂L−1 and R̂L+1. We find that
R̂L is optimum over a continuous range R ∈

[
R−

L , R+
L

]
, where R−

1 = 0, R−
L+1 = R+

L , and the upper
boundary point is determined by equating the variance expressions in Eq. (3) for R̂L and R̂L+1:

R+
L =

√
2L (L + 1) (7)

Thus, the optimum integer L∗(R) is evaluated as

L∗(R) = L, if
√

2L (L − 1) ≤ R ≤
√

2L (L + 1) (8)

In particular, we see that R̂1 is optimum in the region 0 ≤ R ≤ 2, implying no improvement over the
original SSME for these values of R. For values of R in the region 2 ≤ R < 2

√
3, one should use R̂2

(i.e., an estimator based on pairs of quarter-symbol integrations), and in general one should use R̂L

when
√

2L(L − 1) ≤ R ≤
√

2L(L + 1). For R in this interval, the improvement factor I(R) (reduction
in variance) achieved by the new optimized estimator relative to the conventional half-symbol SSME
R̂ = R̂1 is calculated as

I(R) =
var

{
R̂

}
var

{
R̂∗

} =
2 + 4R + R2

L

(
2 +

4R

L
+

R2

L2

) ,
√

2L (L − 1) ≤ R ≤
√

2L (L + 1) (9)
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We have already seen that I(R) = 1 for R ranging from 0 to 2, whereupon it becomes better to use
R̂2, allowing I(R) to increase monotonically to a value of (7 + 4

√
3)/(7 + 4

√
3) = 1.168 (equivalent to

0.674 dB) at R = 2
√

3. Continuing on, in the region 2
√

3 ≤ R < 2
√

6, one should use R̂3 whereupon I(R)
continues to increase monotonically to a value of (13 + 4

√
6)/(7 + 4

√
6) = 1.357 (equivalent to 1.326 dB)

at R = 2
√

6. Figure 2 is a plot of I(R) versus R, as determined from Eq. (9). Note that while I(R) is a
continuous function of R, the derivative of I(R) with respect to R is discontinuous at the critical values
of R, namely, R = R+

L for L ∈ {1, 2, 3, · · ·}, but the discontinuity becomes monotonically smaller as L
increases.

It is also instructive to compare the performance of the optimized realizable estimator R̂∗ with that of
the fictitious estimator R̂•. The corresponding variance ratio is computed directly from Eq. (6), as long
as we are careful to delineate the range of validity from Eq. (8), where each integer value of L contributes
to the optimized estimator R̂∗:

var
{

R̂∗
}

var
{

R̂•
} =

2/r + 4 + r

4 + 2
√

2
,

√
1 − 1/L∗(R) ≤ r√

2
≤

√
1 + 1/L∗(R) (10)

where for the optimized realizable estimator R̂∗ the short symbol SNR r is evaluated explicitly in terms
of R as r = R/L∗(R). We see that for any value of R the corresponding interval of validity in Eq. (10)
always includes the optimal point r =

√
2 at which the ratio of variances is unity. Furthermore, since the

width of these intervals (measured in terms of r) shrinks to zero as L∗(R) → ∞, the ratio of variances
makes smaller and smaller excursions from its value of unity at r =

√
2 as R → ∞, implying L∗(R) → ∞

from Eq. (8). Thus, the asymptotic performance for large R and large N of the optimized realizable
estimator R̂∗ is the same as that of the fictitious estimator R̂• given in Eq. (5). In particular, we see
from Eq. (5) that var{R̂∗} grows only linearly in the limit of large R, whereas var{R̂L} for any fixed L
eventually grows quadratically for large enough R/L.

As can be seen from Eq. (3), the generalized SSME R̂L is asymptotically unbiased (in the limit as
N → ∞). As shown in [11], it is possible to completely remove the bias of the conventional SSME R̂ and
to define a perfectly unbiased estimator as R̂o = R̂− (R̂ + 1/N). Similarly, we can now define a precisely
unbiased version R̂o

L of our generalized estimator R̂L by
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Fig. 2.  Performance improvement as a function of SNR.
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R̂o
L = R̂L − R̂L + L

LN
(11)

Again we note that the original unbiased SSME R̂o is just a special case of our generalized unbiased
SSME, R̂o = R̂o

1. Using the Definition (11) together with the expressions in Eq. (2) for the exact mean
and variance of R̂L, we find that the exact mean and variance of the unbiased estimator R̂o

L are given by

E
{

R̂o
L

}
= R

var
{

R̂o
L

}
=

L2

LN − 2

[(
1 +

4R

L

) (
LN − 1/2

LN

)
+

(
R

L

)2
] (12)

For large N , the asymptotic variance expression obtained from Eq. (12) is identical to that already shown
in Eq. (3) for the biased estimator. Thus, all of the preceding conclusions about the optimal choice of L
for a given R, and the resulting optimal estimator performance, apply equally to the unbiased versions
R̂o

L of the estimators R̂L.

III. A Method for Improving the Robustness of the Generalized SSME

For any fixed L, our generalized SSME R̂L is only optimal when the true SNR R lies in the range√
2L(L − 1) ≤ R ≤

√
2L(L + 1). Indeed, R̂L for any L > 1 is inferior to the original SSME R̂1 for small

enough R (at least for 0 ≤ R ≤ 2). The range of optimality for a given value of L, measured in decibels, is
just 10 log10

[√
2L(L + 1)/

√
2L(L − 1)

]
= 5 log10

[
(L+1)/(L− 1)

]
dB, which diminishes rapidly toward

0 dB with increasing L. In order to achieve the exact performance of the optimized estimator R̂∗ over an
unknown range of values of the true SNR R, one would need to select, and then implement, the optimal
symbol subdivision based on arbitrarily precise knowledge (measured in decibels) of the very parameter
being estimated! Fortunately, there is a more robust version of the generalized SSME that achieves nearly
the same performance as R̂∗, yet requires only very coarse knowledge about the true SNR R.

To define the robust generalized SSME, we use the same set of estimators {R̂L} as defined before for
any fixed integers L, but now we restrict the allowable choices of L to the set of integers {b�, � = 0, 1, 2, · · ·},
for some integer base b ≥ 2. The optimal choice of L restricted to this set is denoted by Lb∗(R), and the
corresponding optimized estimator is denoted by R̂b∗. Because our various estimators differ only in the
amount of freedom allowed for the choice of L, their performances are obviously related as

var
{

R̂•
}
≤ var

{
R̂∗

}
≤ var

{
R̂b∗

}
≤ var

{
R̂1

}
(13)

In this section, we will show analytically that the variance achieved by the robust estimator R̂2∗ with
b = 2 comes very close to that achieved by the fictitious estimator R̂• for all R ≥ 2, and hence Eq. (13)
implies that for this range of R it must be even closer to the less analytically tractable variance achieved
by the optimized realizable estimator R̂∗. Conversely, for all R ≤ 2, we have already seen that the
optimized realizable estimator R̂∗ is the same as the original SSME R̂1, and hence so is the optimized
robust estimator R̂b∗ for any b, since L = b0 = 1 is a permissible value for the robust estimator as well.

The convexity of the general asymptotic variance expression in Eq. (3) again allows us to test the
optimality of R̂b� by simply comparing its performance with that of its nearest permissible neighbors,
R̂b�−1 and R̂b�+1 . The lower and upper endpoints of the region of optimality for any particular R̂b�
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are determined by equating var{R̂b�} with var{R̂b�−1} and var{R̂b�+1}, respectively. This leads to the
following definition of the optimal Lb∗(R) for L restricted to the set {b�, � = 0, 1, 2, · · ·}:

Lb∗(R) =
{

b�, if
√

2b2�−1 ≤ R ≤
√

2b2�+1 for integer � ≥ 1
b0 = 1, if 0 ≤ R ≤

√
2b

(14)

For all R ≤
√

2b, the optimized estimator R̂b∗ is the same as the original SSME R̂1. For all R ≥
√

2/b,
the variance achieved by R̂b∗, normalized to that of the fictitious estimator R̂•, is obtained from Eqs. (6)
and (14) in terms of r = R/Lb∗(R):

var
{

R̂b∗
}

var
{

R̂•
} =

2/r + 4 + r

4 + 2
√

2
≤

4 +
√

2
(√

b + 1/
√

b
)

4 + 2
√

2
,

1√
b
≤ r√

2
≤

√
b (15)

As with the earlier expression, Eq. (10), for the variance of R̂∗, the intervals of validity in Eq. (15) for any
value of R always include the optimal point r =

√
2 at which the ratio of variances is unity. But unlike

Eq. (10), the width of the intervals in Eq. (15) stays constant independent of r. The upper limit on the
variance ratio shown in Eq. (15) occurs at the endpoints of these intervals, i.e., for SNR values expressible
as R =

√
2b2�−1 for some integer � ≥ 0. This upper limit is the maximum excursion from unity of the

variance ratio for all R ≥
√

2/b. For all R ≤ 2 and any b ≥ 2, there is no limit on the suboptimality
of R̂b∗ with respect to the fictitious estimator R̂•, but in this range, R̂b∗ suffers no suboptimality with
respect to the optimized realizable estimator R̂∗, since both are equivalent to the original SSME R̂1 for
R ≤ 2. Finally, reiterating our earlier conclusion based on the simple inequalities in Eq. (13), we conclude
that the maximum degradation D(R) of the robust estimator R̂b∗ with respect to the optimized realizable
estimator R̂∗ is upper bounded for all R by

D(R) =
var

{
R̂b∗

}
var

{
R̂∗

} ≤
var

{
R̂b∗

}
var

{
R̂•

} ≤
4 +

√
2

(√
b + 1/

√
b
)

4 + 2
√

2
for all R (16)

For example, we consider the case of b = 2, which yields permissible values of L given by L =
1, 2, 4, 8, 16, · · · and corresponding decision region boundaries at R = 1, 2, 4, 8, 16, · · ·, i.e., regions sepa-
rated by 3 dB. From Eq. (16), the maximum degradation Dmax for using the coarsely optimized estimator
R̂2∗ instead of the fully optimized realizable estimator R̂∗ is no more than

Dmax ≤ 7
4 + 2

√
2

= 1.02513 (17)

i.e., a penalty of only 2.5 percent. Even if we were to enlarge the regions of constant Lb∗(R) to a width
of 9 dB in R (corresponding to b = 8), the maximum penalty would only increase to

Dmax ≤ 8.5
4 + 2

√
2

= 1.245 (18)

i.e., a penalty just under 25 percent. Thus, even though the optimized generalized SSME R̂∗ requires
(in principle) very precise prior knowledge of the true value of R, its performance can be reasonably well
approximated by that of a robust estimator R̂b∗ requiring only a very coarse prior estimate of R.
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IV. Special Case of the SSME for BPSK-Modulated Data

We can define an analogous sequence of generalized SSMEs {R̃L, L = 1, 2, · · ·} corresponding to the
original SSME R̃ = R̃1 developed for BPSK signals using real-valued in-phase samples only. In this case,
the (exact) mean and variance of the original SSME R̃ are given by [9]

E
{

R̃
}

= R +
2R + 1
N − 2

var
{

R̃
}

=
1

N − 4

(
N

N − 2

)2 [
(1 + 4R)

(
N − 1

N

)
+ 2R2

] (19)

The mean and variance of the generalized SSME R̃L based on real-valued samples are obtained from
Eq. (19) by following the same reasoning that led to Eq. (2):

E
{

R̃L

}
= L

[
R

L
+

2R/L + 1
LN − 2

]
= R +

2R + L

LN − 2

var
{

R̃L

}
=

L2

LN − 4

(
LN

LN − 2

)2
[(

1 +
4R

L

) (
LN − 1

LN

)
+ 2

(
R

L

)2
] (20)

and the asymptotic forms for large N , i.e., N >> 1, are within O(1/N2) of

E
{

R̃L

}
= R +

2R + L

LN

var
{

R̃L

}
=

L

N

[
1 + 4

(
R

L

)
+ 2

(
R

L

)2
] (21)

We can argue as in [10] that the first- and second-order statistics of the SSME R̂L based on complex
samples are derivable from those of the SSME R̃L based on real samples. Specifically, since R̂L is obtained
from twice as many real observables as R̃L, with (on average) only half the SNR (since the SNR is zero
in the quadrature component for BPSK signals), we have the following (exact) equalities:

E

{
R̂L

2

}∣∣
(R,N) = E

{
R̃L

} ∣∣∣∣(R
2 ,2N)

var

{
R̂L

2

}∣∣
(R,N) = var

{
R̃L

} ∣∣∣∣(R
2 ,2N)

(22)

where now we have explicitly denoted the dependence of R̂L and R̃L on the SNR and the number of
symbols. The equalities in Eq. (22) can be verified by direct comparison of Eq. (20) with Eq. (2) and
Eq. (21) with Eq. (3).

As in our earlier analysis of the generalized SSME R̂L based on complex-valued samples, we can
also optimize the generalized SSME R̃L based on real-valued samples with respect to its asymptotic
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performance expressions in Eq. (21). We define for any fixed value of R an optimum integer L = L̃∗(R)
and an optimum real number L = L̃•(R) to minimize the asymptotic variance expression in Eq. (21),
and corresponding optimal realizable and fictitious estimators R̃∗ and R̃•. For the optimum realizable
estimate we find, corresponding to Eq. (8), that the optimum integer L̃∗(R) is evaluated as

L̃∗(R) = L, if
√

L (L − 1) /2 ≤ R ≤
√

L (L + 1) /2 (23)

We find, corresponding to Eqs. (4) and (5), that the optimal real value of L is L̃•(R) = R
√

2 and the
corresponding variance is

var
{

R̃•
}

=
R

N

(
4 + 2

√
2
)

= var
{

R̂•
}

(24)

In other words, the fictitious estimator achieves identical variance using either real samples or complex
samples.

Finally, we observe from a comparison of Eqs. (2) and (20) an interesting (exact) relationship between
the means and variances of the two generalized SSMEs for different values of the symbol rate oversampling
factor L:

E
{

R̂L

}
= E

{
R̃2L

}

var
{

R̂L

}
= var

{
R̃2L

} (25)

Thus, the estimators R̃L based on real samples can be viewed as a more finely quantized sequence than
the estimators R̂L based on complex samples, in that any mean and variance achievable by an estimator
in the latter sequence is also achievable by taking twice as many subintervals in a corresponding estimator
from the former sequence. This implies, for example, that the maximum deviation of the variances of R̃∗
and R̃• is no greater than that calculated in Eq. (10) for the deviation between the variances of R̂∗ and
R̂•.

V. Comparison with the Cramer–Rao Lower Bound on the Variance of SNR
Estimators

A good benchmark for the performance of a given SNR estimator is the Cramer–Rao (C-R) lower
bound on its variance [12]. Here we present for comparison the C-R lower bound for any SNR estimator
using a given number of observables (samples) per symbol interval, with or without knowledge of the
data. For simplicity, we consider only estimators based on real observables, since a number of C-R
bounds reported elsewhere [2,6,13] have explicitly considered that case.

It has been shown in [13] that the C-R lower bound on the variance of an arbitrary unbiased estimator
of SNR, R∗, in the presence of unknown binary equiprobable data and M independent real observations
per symbol (M subinterval samples) is given by

var {R∗} ≥ 2R2

N

[
2M + 2R − E2 (2R)

2MR − (4R + M)E2 (2R)

]
(26)

where

9



E2 (2R) = E
{
X2sech2X

}
(27)

with X a Gaussian random variable with mean and variance both equal to 2R. The expectation in
Eq. (27), which depends only on R, cannot be determined in closed form but is easily evaluated numeri-
cally. Figure 3 (discussed at the end of this section) compares the C-R bounding variance in Eq. (26) with
the actual asymptotic variance in Eq. (21) achieved by the generalized SSME R̃L based on real samples.
For this comparison, we substitute M = 2L in the C-R bound expression (because there are M = 2L
subinterval integrations contributing to the SSME R̃L), and we plot the cases L = 1, 2, 4,∞.

We can also perform analytic comparisons in the limits of low and high SNR. The low- and high-SNR
behavior of the C-R bounding variance in Eq. (26) is given by [13]

var {R∗} ≥




1
2N

(
M

M − 1

)
, R << 1 < M

2R

N

(
1 +

R

M

)
, R >> M

(28)
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Fig. 3.  Comparison of the performance of several SNR estimators with the Cramer–Rao bound.
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By comparison, the asymptotic expression in Eq. (21) for the variance of R̃L for any fixed L reduces in
the low and high SNR limits to

var
{

R̃L

}
≈




L

N
=

M

2N
, L >> R

2R2

NL

(
1 +

2L

R

)
=

4R

N

(
1 +

R

M

)
, R >> L

(29)

Compared to the C-R bounding variance in Eq. (28), the actual variance in Eq. (29) is higher by a factor
of M − 1 in the low-SNR limit and by a factor of 2 in the high-SNR limit.

For any fixed M , the C-R bounding variance in Eq. (26) becomes quadratic in R as R approaches
infinity, as evidenced by the second expression in Eq. (29). On the other hand, the limiting behavior of
the bound for M approaching infinity with fixed R is given by

var {R∗} ≥ 1
N

[
4R2

2R − E2 (2R)

]
, M >> max (R, 1) (30)

Since E2(2R) ≈ 2R + 8R2 + O(R3) for small R and is exponentially small for large R [13], the C-R
bounding variance on the right side of Eq. (30) approaches a constant at low SNR and becomes linear in
R at high SNR:

var {R∗} ≥




1
2N

, M >> 1 >> R

2R

N
, M >> R

(31)

Since the C-R bounding expressions in Eqs. (30) and (31) for large values of M = 2L reflect the best
possible performance of an estimator with access to a continuum of samples within each symbol, they
are suitably compared to the performance of the optimized estimator R̃∗, rather than to the performance
of R̃L for any fixed L. As an approximation to R̃∗, we use a stand-in estimator equal to R̃1 for R ≤ 2
(i.e., where L̃∗(R) = 1) and to the fictitiously optimized estimator R̃• for R > 2. The corresponding
asymptotic variances computed from Eq. (21) for the limits corresponding to those in Eq. (31) are




var
{

R̃1

}
=

1
N

, 1 >> R

var
{

R̃•
}

=
R

N

(
4 + 2

√
2

)
, R >> 1

(32)

The estimator variances in Eq. (32) are higher than the corresponding C-R bounding variances in Eq. (31)
by a factor of 2 in the low-SNR limit and by a factor of 2+

√
2 ≈ 3.4 in the high-SNR limit. The optimized

realizable estimator R̃∗ suffers an additional small suboptimality factor with respect to the performance
of the fictitious estimator R̃• used as its stand-in in Eq. (32).
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Finally, we consider for purposes of comparison the C-R bound on an arbitrary unbiased estimator
when the data are perfectly known. The C-R bound under this assumption is well known [e.g., A, B, C].
Here we continue with the notation of [13] by noting that the derivation there for the case of unknown
data is easily modified to the known-data case by skipping the average over the binary equiprobable
data. The result is equivalent to replacing the function E2 (2R) by zero in the C-R bound expression in
Eq. (26), i.e.,

var
{

R̂
}
≥ 2R2

N

[
2M + 2R

2MR

]
=

2R

N

(
1 +

R

M

)
, for all M, R (33)

Comparing this bound for known data, which is valid for all M and R, with the high-SNR bound for
the unknown data case as given in the second expression in Eq. (28), we see that the two variance
expressions are identical (to within the approximation that E2(2R) is exponentially small for large R).
Thus, we reach the interesting and important conclusion that, based on the C-R bounds, knowledge of the
data is inconsequential in improving the accuracy of an optimized SNR estimator at high enough SNR!
Conversely, at low SNR, we have seen in Eq. (28) that the C-R bounding variance for the case of unknown
data hits a nonzero floor at (1/2N)[M/(M − 1)] no matter how closely R approaches zero, whereas the
bounding variance in Eq. (33) for the case of known data goes to zero linearly in R. Thus, knowledge of
the data fundamentally changes the behavior of the C-R bound at low SNR, and it can be quite helpful
in this region for improving the accuracy of the estimator.

Figure 3 summarizes the comparisons of our generalized SSME with the relevant C-R bounds (CRB).
This figure plots CRB as a function of true SNR R, for M = 2, 4,∞ with unknown data, and for M = ∞
with known data. Also shown for comparison are the actual asymptotic variances achieved by the original
SSME R̃1, the generalized SSME R̃2 using four subinterval integrations within each symbol, and the
optimized generalized SSME R̃∗. In each case, the asymptotic variance is plotted in normalized form as
Nvar{·}/R2, which can be interpreted as the number of symbols N that must be observed to achieve a
fractional estimator variance of 100 percent; smaller fractional variances require inversely proportionately
larger numbers of symbols.

VI. Improvement in the Presence of Frequency Uncertainty

In [11] the authors considered the performance of the conventional (L = 1) SSME in the presence
of carrier phase and frequency uncertainties. A variety of cases were considered, corresponding to the
degree to which the frequency uncertainty is estimated and compensated for. Here we extend the results
given there to the scenario under investigation, i.e., we examine the improvement in performance when
frequency uncertainty is present, obtained by optimally partitioning the symbol interval in accordance
with the value of the true SNR. In the case where the frequency uncertainty is not estimated, one has no
choice other than to use the SNR boundaries determined in the no-frequency-uncertainty case, i.e., those
given in Eq. (8) or Eq. (14). For the cases where an estimate of the frequency uncertainty is available, and
therefore can be compensated for, one can use this information, if desired, to modify the SNR boundaries.
However, to a first-order approximation, we shall assume in what follows that we always determine the
boundaries for the symbol regions of fixed partitioning from their zero-frequency-uncertainty values. This
allows one to implement a fixed SSME configuration independent of the knowledge of the frequency error
and yet still obtain the possibility of a performance advantage relative to the conventional half-symbol
split structure. To illustrate the application of the principles involved and resulting performance gains
obtained, we shall consider a few of the cases treated in [11].
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A. Case 1: Frequency Uncertainty, No Frequency Estimation (and thus No Phase Compensation)

For this case, it was shown in [11] that the variance of the conventional SSME is given by

var
{

R̂
}

=
(

N

N − 1

)2 { (
N − 1
N − 2

) [
(1 + 2h+(δ)R)

N
+

(
1 + h+(δ)R

)2
]

× 1F1

(
2;N ;−Nh− (δ) R

)
−

(
1 + h+ (δ)R

)2 [
1F1

(
1;N ;−Nh− (δ)R

)]2} (34)

where 1F1(a; b; z) is the Kummer confluent hypergeometric function and

h± (δ) �= sinc2

(
δ

4

) [
1 ± cos (δ/2)

2

]
(35)

with δ
�= ωT denoting the normalized (to the symbol time) frequency uncertainty. Note that in the

absence of frequency uncertainty, i.e., δ = 0, using the fact that 1F1(a; b; 0) = 1, it is straightforward to
show that Eq. (34) simplifies to Eq. (1) as it should.

To modify the expression in Eq. (34) for the case of 2L partitions of the symbol interval, we proceed as
before by replacing R with R/L, N with LN , δ with δ/L, and then multiplying the result by L2 resulting
in

var
{

R̂L

}
= L2

(
LN

LN − 1

)2




(
LN − 1
LN − 2

) 


(
1 + 2h+ (δ/L)

R

L

)
LN

+
(

1 + h+ (δ/L)
R

L

)2




× 1F1

(
2;LN ;−Nh− (δ/L) R

)
−

(
1 + h+ (δ/L)

R

L

)2 [
1F1

(
1;LN ;−Nh− (δ/L) R

)]2


(36)

Then, the improvement in performance is obtained by taking the ratio of Eq. (34) to Eq. (36), i.e.,

I(R) =
var{R̂}

var
{

R̂L

} (37)

where, for a value of R in the interval R−
L ≤ R < R+

L , the value of L to be used corresponds to that
determined from Eq. (8) or alternatively from Eq. (14). We note that since the boundaries of the SNR
regions of Eqs. (8) and (14) are determined from the asymptotic (large N) expressions for the estimator
variance, a plot of I(R) versus R determined from Eq. (37) will exhibit small discontinuities at these
boundaries. These discontinuities will become vanishingly small as N increases.

Figures 4 and 5 illustrate such a plot for values of N equal to 20 and 100, respectively, with δ as a
parameter. We make the interesting observation that although on an absolute basis the variance of the
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estimator monotonically improves with increasing N , the improvement factor as evaluated from Eq. (37),
which makes use of the exact expression for the estimator variance, shows a larger improvement for smaller
values of N . To see how this comes about analytically, we examine the behavior of the zero-frequency-
uncertainty improvement factor for large SNR. For sufficiently large SNR (equivalently, large L), we
obtain from Eq. (2) the same asymptotic expression as given in Eq. (3) when assuming N large. Also,
since for large SNR L and R are approximately related by L = R/

√
2, then substituting this in Eq. (3)

gives the asymptotic result

var
{

R̂L

}
∼= R

N

(
4 + 2

√
2
)

(38)

From Eq. (1), we have for sufficiently large SNR

var
{

R̂
}

=
1

N − 2

(
N

N − 1

)2

R2 (39)

Thus, the improvement factor for large SNR is the ratio of Eq. (39) to Eq. (38), namely,

I (R) =

1
N − 2

(
N

N − 1

)2

R2

R

N

(
4 + 2

√
2
) =

R

4 + 2
√

2

(
N

N − 2

) (
N

N − 1

)2

(40)

which, for a given R, is a monotonically decreasing function of N approaching I(R) = R/(4 + 2
√

2) in
the limit as N → ∞.

B. Case 2b: Frequency Uncertainty, Perfect Frequency Estimation, Fractional-Symbol Phase
Compensation

Another interesting case corresponds to the situation where the frequency uncertainty is perfectly
estimated and then used to compensate for the phase shift caused by this uncertainty in the second half
of the symbol interval. For this case, the variance of the estimator was determined in [11] as

var
{

R̂
}

=
1(

h+(δ)
)2

1
N − 2

(
N

N − 1

)2 [(
1 + 2h+(δ)R

) (
2N − 1

N

)
+

(
h+(δ)R

)2
]

(41)

where now

h+(δ) �= sinc2

(
δ

4

)
(42)

Making the same substitutions as before, for a 2L-partition of the symbol interval we obtain

var
{

R̂L

}
= L2 1(

h+(δ/L)
)2

1
LN − 2

(
LN

LN − 1

)2
[ (

1 + 2h+

(
δ

L

)
R

L

) (
2LN − 1

LN

)

+
(

h+

(
δ

L

)
R

L

)2
]

(43)
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Comparing Eq. (41) with Eq. (1), we observe that, in this case, the variance of h+(δ)R̂ for the conventional
SSME is identical to the variance of R̂ in the zero-frequency-uncertainty case. From a comparison of
Eqs. (43) and (2), a similar equivalence can be made between the variance of h+(δ/L)R̂ and the variance
of R̂ for the 2L-partition estimator.

Analogous to what was done for Case 1, the improvement factor, I(R), here can be obtained from the
ratio of Eq. (41) to Eq. (43). Figures 6 and 7 are plots of I(R) versus true SNR, R, for values of N equal
to 20 and 100, respectively, with δ as a parameter. Once again we make the observation that a larger
improvement is obtained for smaller values of N . An analytical justification for this observation can be
demonstrated by examining the behavior of I for large SNR. Specifically, the analogous expression to
Eq. (40) now becomes

I(R) =

(
1

(h+ (δ))2 R
+

2
h+ (δ)

)(
2N − 1

N

)
+ R

4
h+

(√
2δ/R

) +
√

2

(
1 +

1(
h+

(√
2δ/R

))2

) (
N

N − 2

) (
N

N − 1

)2

(44)

which for sufficiently large R relative to δ (i.e., h+(
√

2δ/R) ∼= 1) becomes

I(R) =

(
1

(h+ (δ))2 R
+

2
h+ (δ)

)(
2N − 1

N

)
+ R

4 + 2
√

2

(
N

N − 2

) (
N

N − 1

)2

(45)

Once again we see in Figs. 6 and 7 the same dependence on N as before approaching

I(R) =

2

(
1

(h+ (δ))2 R
+

2
h+ (δ)

)
+ R

4 + 2
√

2
(46)

in the limit as N → ∞. We also note that whereas in the previous figures, for a given value of R, the
improvement factor decreased with increasing frequency uncertainty, here it increases, which is consistent
with Eq. (46) since, from Eq. (42), h+(δ) is a monotonically decreasing function of δ. The intuitive reason
for this occurrence is that, for the conventional SSME, the performance degrades much more severely in the
presence of large frequency uncertainty than for the improved SSME since for the former the degradation
factor h+(δ) operates out on its tail whereas for the latter the effective frequency uncertainty is reduced
by a factor of L and, thus, for large L the degradation factor h+(δ/L) ∼= h(

√
2δ/R) operates near its

peak of unity. Eventually for sufficiently large R, the improvement approaches I(R) = R/(4 + 2
√

2) as
in Case 1. Finally, comparing Figs. 6 and 7 with Figs. 4 and 5, we observe that much larger frequency
uncertainties can be tolerated for Case 2b than for Case 1.
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VII. Conclusions

We have demonstrated that the performance (as measured by its variance) of a popular SNR estimator
can be improved by increasing the number of observables per symbol (accomplished by partitioning
the symbol interval into a larger (than two) even number of subdivisions) but still processing them
in successive pairs. We have shown that the amount of improvement is a function of the true SNR
being estimated and continues to increase monotonically with increasing SNR. Despite its ad hoc nature,
the modified estimator tracks the Cramer–Rao bound on the variance of SNR estimators with known
or unknown data over the entire range of SNR values, a property not previously achievable with the
conventional version of this estimator.
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